3.76 \(\int \frac{1}{(a+a \sec (e+f x))^{3/2} (c-c \sec (e+f x))} \, dx\)

Optimal. Leaf size=177 \[ \frac{\cot (e+f x) \sqrt{a \sec (e+f x)+a}}{4 a^2 c f}+\frac{2 \tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{a \sec (e+f x)+a}}\right )}{a^{3/2} c f}-\frac{7 \tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{2} \sqrt{a \sec (e+f x)+a}}\right )}{4 \sqrt{2} a^{3/2} c f}+\frac{\cos (e+f x) \cot (e+f x) \sec ^2\left (\frac{1}{2} (e+f x)\right ) \sqrt{a \sec (e+f x)+a}}{4 a^2 c f} \]

[Out]

(2*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + a*Sec[e + f*x]]])/(a^(3/2)*c*f) - (7*ArcTan[(Sqrt[a]*Tan[e + f*x])/(
Sqrt[2]*Sqrt[a + a*Sec[e + f*x]])])/(4*Sqrt[2]*a^(3/2)*c*f) + (Cot[e + f*x]*Sqrt[a + a*Sec[e + f*x]])/(4*a^2*c
*f) + (Cos[e + f*x]*Cot[e + f*x]*Sec[(e + f*x)/2]^2*Sqrt[a + a*Sec[e + f*x]])/(4*a^2*c*f)

________________________________________________________________________________________

Rubi [A]  time = 0.244441, antiderivative size = 177, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.214, Rules used = {3904, 3887, 472, 583, 522, 203} \[ \frac{\cot (e+f x) \sqrt{a \sec (e+f x)+a}}{4 a^2 c f}+\frac{2 \tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{a \sec (e+f x)+a}}\right )}{a^{3/2} c f}-\frac{7 \tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{2} \sqrt{a \sec (e+f x)+a}}\right )}{4 \sqrt{2} a^{3/2} c f}+\frac{\cos (e+f x) \cot (e+f x) \sec ^2\left (\frac{1}{2} (e+f x)\right ) \sqrt{a \sec (e+f x)+a}}{4 a^2 c f} \]

Antiderivative was successfully verified.

[In]

Int[1/((a + a*Sec[e + f*x])^(3/2)*(c - c*Sec[e + f*x])),x]

[Out]

(2*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + a*Sec[e + f*x]]])/(a^(3/2)*c*f) - (7*ArcTan[(Sqrt[a]*Tan[e + f*x])/(
Sqrt[2]*Sqrt[a + a*Sec[e + f*x]])])/(4*Sqrt[2]*a^(3/2)*c*f) + (Cot[e + f*x]*Sqrt[a + a*Sec[e + f*x]])/(4*a^2*c
*f) + (Cos[e + f*x]*Cot[e + f*x]*Sec[(e + f*x)/2]^2*Sqrt[a + a*Sec[e + f*x]])/(4*a^2*c*f)

Rule 3904

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.), x_Symbol] :> Di
st[(-(a*c))^m, Int[Cot[e + f*x]^(2*m)*(c + d*Csc[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x]
&& EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m] && RationalQ[n] &&  !(IntegerQ[n] && GtQ[m - n, 0])

Rule 3887

Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_.), x_Symbol] :> Dist[(-2*a^(m/2 +
 n + 1/2))/d, Subst[Int[(x^m*(2 + a*x^2)^(m/2 + n - 1/2))/(1 + a*x^2), x], x, Cot[c + d*x]/Sqrt[a + b*Csc[c +
d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[m/2] && IntegerQ[n - 1/2]

Rule 472

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> -Simp[(b*(e*x
)^(m + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(a*e*n*(b*c - a*d)*(p + 1)), x] + Dist[1/(a*n*(b*c - a*d)*(
p + 1)), Int[(e*x)^m*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*b*(m + 1) + n*(b*c - a*d)*(p + 1) + d*b*(m + n*(
p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, m, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p
, -1] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 583

Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
x_Symbol] :> Simp[(e*(g*x)^(m + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(a*c*g*(m + 1)), x] + Dist[1/(a*c*
g^n*(m + 1)), Int[(g*x)^(m + n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*f*c*(m + 1) - e*(b*c + a*d)*(m + n + 1) - e
*n*(b*c*p + a*d*q) - b*e*d*(m + n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p, q}, x] &&
 IGtQ[n, 0] && LtQ[m, -1]

Rule 522

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), x_Symbol] :> Dist[(b*e - a*f
)/(b*c - a*d), Int[1/(a + b*x^n), x], x] - Dist[(d*e - c*f)/(b*c - a*d), Int[1/(c + d*x^n), x], x] /; FreeQ[{a
, b, c, d, e, f, n}, x]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{(a+a \sec (e+f x))^{3/2} (c-c \sec (e+f x))} \, dx &=-\frac{\int \frac{\cot ^2(e+f x)}{\sqrt{a+a \sec (e+f x)}} \, dx}{a c}\\ &=\frac{2 \operatorname{Subst}\left (\int \frac{1}{x^2 \left (1+a x^2\right ) \left (2+a x^2\right )^2} \, dx,x,-\frac{\tan (e+f x)}{\sqrt{a+a \sec (e+f x)}}\right )}{a^2 c f}\\ &=\frac{\cos (e+f x) \cot (e+f x) \sec ^2\left (\frac{1}{2} (e+f x)\right ) \sqrt{a+a \sec (e+f x)}}{4 a^2 c f}+\frac{\operatorname{Subst}\left (\int \frac{a-3 a^2 x^2}{x^2 \left (1+a x^2\right ) \left (2+a x^2\right )} \, dx,x,-\frac{\tan (e+f x)}{\sqrt{a+a \sec (e+f x)}}\right )}{2 a^3 c f}\\ &=\frac{\cot (e+f x) \sqrt{a+a \sec (e+f x)}}{4 a^2 c f}+\frac{\cos (e+f x) \cot (e+f x) \sec ^2\left (\frac{1}{2} (e+f x)\right ) \sqrt{a+a \sec (e+f x)}}{4 a^2 c f}-\frac{\operatorname{Subst}\left (\int \frac{9 a^2+a^3 x^2}{\left (1+a x^2\right ) \left (2+a x^2\right )} \, dx,x,-\frac{\tan (e+f x)}{\sqrt{a+a \sec (e+f x)}}\right )}{4 a^3 c f}\\ &=\frac{\cot (e+f x) \sqrt{a+a \sec (e+f x)}}{4 a^2 c f}+\frac{\cos (e+f x) \cot (e+f x) \sec ^2\left (\frac{1}{2} (e+f x)\right ) \sqrt{a+a \sec (e+f x)}}{4 a^2 c f}+\frac{7 \operatorname{Subst}\left (\int \frac{1}{2+a x^2} \, dx,x,-\frac{\tan (e+f x)}{\sqrt{a+a \sec (e+f x)}}\right )}{4 a c f}-\frac{2 \operatorname{Subst}\left (\int \frac{1}{1+a x^2} \, dx,x,-\frac{\tan (e+f x)}{\sqrt{a+a \sec (e+f x)}}\right )}{a c f}\\ &=\frac{2 \tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{a+a \sec (e+f x)}}\right )}{a^{3/2} c f}-\frac{7 \tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{2} \sqrt{a+a \sec (e+f x)}}\right )}{4 \sqrt{2} a^{3/2} c f}+\frac{\cot (e+f x) \sqrt{a+a \sec (e+f x)}}{4 a^2 c f}+\frac{\cos (e+f x) \cot (e+f x) \sec ^2\left (\frac{1}{2} (e+f x)\right ) \sqrt{a+a \sec (e+f x)}}{4 a^2 c f}\\ \end{align*}

Mathematica [A]  time = 1.1741, size = 154, normalized size = 0.87 \[ \frac{\sin ^2\left (\frac{1}{2} (e+f x)\right ) \tan \left (\frac{1}{2} (e+f x)\right ) \left (3 \cos (e+f x)-7 \sqrt{2} \cos ^2\left (\frac{1}{2} (e+f x)\right ) \sqrt{\sec (e+f x)-1} \tan ^{-1}\left (\frac{\sqrt{\sec (e+f x)-1}}{\sqrt{2}}\right )+8 (\cos (e+f x)+1) \sqrt{\sec (e+f x)-1} \tan ^{-1}\left (\sqrt{\sec (e+f x)-1}\right )+1\right )}{2 a c f (\cos (e+f x)-1)^2 \sqrt{a (\sec (e+f x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((a + a*Sec[e + f*x])^(3/2)*(c - c*Sec[e + f*x])),x]

[Out]

((1 + 3*Cos[e + f*x] - 7*Sqrt[2]*ArcTan[Sqrt[-1 + Sec[e + f*x]]/Sqrt[2]]*Cos[(e + f*x)/2]^2*Sqrt[-1 + Sec[e +
f*x]] + 8*ArcTan[Sqrt[-1 + Sec[e + f*x]]]*(1 + Cos[e + f*x])*Sqrt[-1 + Sec[e + f*x]])*Sin[(e + f*x)/2]^2*Tan[(
e + f*x)/2])/(2*a*c*f*(-1 + Cos[e + f*x])^2*Sqrt[a*(1 + Sec[e + f*x])])

________________________________________________________________________________________

Maple [B]  time = 0.254, size = 377, normalized size = 2.1 \begin{align*} -{\frac{1}{8\,fc{a}^{2} \left ( \sin \left ( fx+e \right ) \right ) ^{3}}\sqrt{{\frac{a \left ( 1+\cos \left ( fx+e \right ) \right ) }{\cos \left ( fx+e \right ) }}} \left ( -8\, \left ( \cos \left ( fx+e \right ) \right ) ^{2}\sin \left ( fx+e \right ) \sqrt{2}\sqrt{-2\,{\frac{\cos \left ( fx+e \right ) }{1+\cos \left ( fx+e \right ) }}}{\it Artanh} \left ( 1/2\,{\frac{\sqrt{2}\sin \left ( fx+e \right ) }{\cos \left ( fx+e \right ) }\sqrt{-2\,{\frac{\cos \left ( fx+e \right ) }{1+\cos \left ( fx+e \right ) }}}} \right ) -7\,\sin \left ( fx+e \right ) \left ( \cos \left ( fx+e \right ) \right ) ^{2}\sqrt{-2\,{\frac{\cos \left ( fx+e \right ) }{1+\cos \left ( fx+e \right ) }}}\ln \left ({\frac{1}{\sin \left ( fx+e \right ) } \left ( \sqrt{-2\,{\frac{\cos \left ( fx+e \right ) }{1+\cos \left ( fx+e \right ) }}}\sin \left ( fx+e \right ) -\cos \left ( fx+e \right ) +1 \right ) } \right ) +8\,\sqrt{2}\sin \left ( fx+e \right ){\it Artanh} \left ( 1/2\,{\frac{\sqrt{2}\sin \left ( fx+e \right ) }{\cos \left ( fx+e \right ) }\sqrt{-2\,{\frac{\cos \left ( fx+e \right ) }{1+\cos \left ( fx+e \right ) }}}} \right ) \sqrt{-2\,{\frac{\cos \left ( fx+e \right ) }{1+\cos \left ( fx+e \right ) }}}+6\, \left ( \cos \left ( fx+e \right ) \right ) ^{3}+7\,\sin \left ( fx+e \right ) \sqrt{-2\,{\frac{\cos \left ( fx+e \right ) }{1+\cos \left ( fx+e \right ) }}}\ln \left ({\frac{1}{\sin \left ( fx+e \right ) } \left ( \sqrt{-2\,{\frac{\cos \left ( fx+e \right ) }{1+\cos \left ( fx+e \right ) }}}\sin \left ( fx+e \right ) -\cos \left ( fx+e \right ) +1 \right ) } \right ) -4\, \left ( \cos \left ( fx+e \right ) \right ) ^{2}-2\,\cos \left ( fx+e \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+a*sec(f*x+e))^(3/2)/(c-c*sec(f*x+e)),x)

[Out]

-1/8/c/f/a^2*(1/cos(f*x+e)*a*(1+cos(f*x+e)))^(1/2)*(-8*cos(f*x+e)^2*sin(f*x+e)*2^(1/2)*(-2*cos(f*x+e)/(1+cos(f
*x+e)))^(1/2)*arctanh(1/2*2^(1/2)*(-2*cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*sin(f*x+e)/cos(f*x+e))-7*sin(f*x+e)*cos
(f*x+e)^2*(-2*cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*ln(((-2*cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*sin(f*x+e)-cos(f*x+e)+
1)/sin(f*x+e))+8*2^(1/2)*sin(f*x+e)*arctanh(1/2*2^(1/2)*(-2*cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*sin(f*x+e)/cos(f*
x+e))*(-2*cos(f*x+e)/(1+cos(f*x+e)))^(1/2)+6*cos(f*x+e)^3+7*sin(f*x+e)*(-2*cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*ln
(((-2*cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*sin(f*x+e)-cos(f*x+e)+1)/sin(f*x+e))-4*cos(f*x+e)^2-2*cos(f*x+e))/sin(f
*x+e)^3

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\int \frac{1}{{\left (a \sec \left (f x + e\right ) + a\right )}^{\frac{3}{2}}{\left (c \sec \left (f x + e\right ) - c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sec(f*x+e))^(3/2)/(c-c*sec(f*x+e)),x, algorithm="maxima")

[Out]

-integrate(1/((a*sec(f*x + e) + a)^(3/2)*(c*sec(f*x + e) - c)), x)

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sec(f*x+e))^(3/2)/(c-c*sec(f*x+e)),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} - \frac{\int \frac{1}{a \sqrt{a \sec{\left (e + f x \right )} + a} \sec ^{2}{\left (e + f x \right )} - a \sqrt{a \sec{\left (e + f x \right )} + a}}\, dx}{c} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sec(f*x+e))**(3/2)/(c-c*sec(f*x+e)),x)

[Out]

-Integral(1/(a*sqrt(a*sec(e + f*x) + a)*sec(e + f*x)**2 - a*sqrt(a*sec(e + f*x) + a)), x)/c

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sec(f*x+e))^(3/2)/(c-c*sec(f*x+e)),x, algorithm="giac")

[Out]

Timed out